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The basic logic gates are the inverter (or NOT gate), the AND gate, 
the OR gate and the exclusive-OR gate (XOR).   If you put an 
inverter in front of the AND gate, you get the NAND gate etc.
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One of the common tool in specifying a gate function is the truth 
table.  All possible combination of the inputs A, B … etc, are 
enumerated, one row for each possible combination.  Then a 
column is used to show the corresponding output value.
If two ligic circuits share identical truth table, they are functionally 
equivalent.
Shown here are example of truth tables for logic gate with 2, 3 and 
4 inputs.
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Here we show five different representation of the OR gate or OR 
function.  They are:
1. Schematic diagram in a logic symbol
2. Truth table
3. Boolean expression
4. Timing diagram
5. Expression in programming language (e.g. Python)

In summary, OR operation produces as result of 1 whenever any 
input is 1. Otherwise 0.
An OR gate is a logic circuit that performs an OR operation on 
the circuit's input.
The expression x=A+B is read as �x equals A OR B�
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Self check questions:

What is the only set of input conditions that will produce a LOW 
output for any OR gate?
Answer: all inputs LOW

Write the Boolean expression for a six-input OR gate.
Answer: X=A+B+C+D+E+F 

If the A input in example shown above is permanently kept at the 1 
level, what will the resultant output waveform be?
Answer: constant HIGH
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The AND operation is performed the same as ordinary 
multiplication of 1s and 0s.
An AND gate is a logic circuit that performs the AND operation on 
the circuit�s inputs.
An AND gate output will be 1 only for the case when all inputs are 
1; for all other cases the output will be 0.
The expression x=A•B is read as �x equals A AND B.�

Self-check questions:
What is the only input combination that will produce a HIGH at the 
output of a five-input AND gate?
Answer: all 5 inputs = 1

What logic level should be applied to the second input of a two-
input AND gate if the logic signal at the first input is to be 
inhibited(prevented) from reaching the output?
Answer: A LOW input will keep the output LOW

True or false: An AND gate output will always differ from an OR? 
Anaswer: False
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The NOT gate (inverter) is simple, but important. Note the 
difference between a Boolean operator “not A”, where A is a 
Boolean variable (i.e. True or False), and that for a multiple bit 
variable.  In multiple bit case, ~A results in EACH BIT within A 
being inverted.  This is also known as “bitwise” operation.
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Using symbolic diagram or truth table to specify or describe logic 
gates and logic functions is cumbersome.  A much better way is to 
use algebraic expression.  Here a “dot” represents the AND 
operation, and a “+” represents and OR operation.  Furhtermore, a 
bar over a variable or a ‘/’ in front of the variable represents an 
inversion (NOT function).
The convention is that AND has precedence over OR.
Precedence rules in Boolean algebra:

1. First, perform all inversions of single terms
2. Perform all operations with parentheses
3. Perform an AND operation before an OR operation unless 

parentheses indicate otherwise
4. If an expression has a bar over it, perform the operations 

inside the expression first and then invert the result
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Inversion in Boolean expression has a bar over the Boolean 
variable.  Here are a number of examples.
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We often do not draw the full inverter, but use a circle to indicate 
inversion.  Therefore shown here on the top circuit, there is a 2-
input OR gate followed by an inverter, making it a NOR gate.
The evaluate the output of this circuit for inputs shown, we 
propagate the input values through the gates from left to right.
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Given a Boolean expression, we can easily translate it to symbolic 
representation of gates.  This is quite easy to do.
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Just like normal algebra, Boolean algebra allows us to manipulate 
the logic equation and perform transformation and simplification.  
Boolean algebra obeys the same laws as normal algebra: 
1. the commutative law – the order of the Boolean variables do 

not matter
2. the associative law – the order of the Boolean operators do not 

matter
3. The distributive law –one can distribute a Boolean operator into 

the parenthesis
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There are also a number of rules to help simplification of Boolean 
expression.
The first 9 rules listed here are obvious.
Rule 10: Less obvious, but it is clearly shown here that it is true.
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Rule 11 and Rule 12 are more difficult.    You may need to 
remember them in order to apply them for the purpose of 
simplifying Boolean expressions.
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Here are three examples of simplification of Boolean expressions
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De’Morgan’s Theorems is important to Boolean logic.  They allow us 
to exchange OR operation with AND operation and vice versa.
Applying De’Morgan, we can also simplify Boolean expression in 
many cases.
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De’Morgan requires an inverter output.
Here is symbolic representation of De’Morgan:  move the inversion 
to the inputs, and change OR to AND, or AND to OR.
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Let us assume that we ONLY have 2-input NAND gate.  From this 
,we can get an inverter, an AND gate, and, thanks to De’Morgan, 
we can also get an OR gate.  In other words, if we have a 2-input 
NAND gate, we can build the three basic logic operators: NOT, AND 
and OR.  As a result, we can build ANY logic circuit and implement 
any Boolean expression.  Taken to limit, give me as many NAND 
gate as I want, in theory I can build a Pentium processor.  This 
shows the universality of the NAND gate.
Similarly, one can do the same for NOR gates.
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The exclusive-OR gate is high only if the two inputs are 
DIFFERENT, i.e. either A is high OR B is high but not both.
The XOR gate is often used as logic comparator (output is 0 if the 
two inputs are equal).
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Now let us take a functional view of logic operators.  
The AND operator can be interpreted as having an enabling or 
disabling function. (We sometimes call this a ‘gating function” as if 
it perform a gate keeping (i.e blocking) function.)  Input B here is a 
the gating control – if B = 1, it lets A through, otherwise if B = 0, it 
blocks A.
The OR operator can be interpreted as a merging function. It 
combines both A and B high level and merge them to form output 
X.
The XOR gate can be viewed as a selectable inverter.  If B = 0, A is 
pass to the output.  If B = 1, A is inverted.  So B determines 
inversion, or no inversion of A.
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The multiplexer is another useful gate function. It has a number of 
data inputs, a number of select inputs, and an output.  The select 
inputs determines WHICH of the data input is sent to the output.  
Shown here is a 2-to-1 multiplexer  with inputs I0 and I1.  If S is 0, 
Z = I0, if S is 1, Z= I1.
One can combine a number of 2-to-1 multiplexer to form larger 
multiplexers.  For example, if we use THREE 2-1 MUX, we can build 
a 4-to-1 multiplexer.
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Combinational logic gates evaluate Boolean expressions.  They can 
do computation, decoding (e.g. mapping of one binary number to 
another binary number), selection (such as multiplexers and de-
multiplexers) and any function that can be expressed in Boolean 
expression form.  One key characteristic of combinational logic is 
that outputs completely determined by the input values at a given 
time.  As soon as input changes, soon afterwards, the output will 
change if necessary.  Since the logic gates themselves have delay, 
the change may happen with some delay.
In other words, combinational logic gates DO NOT HAVE MEMORY 
(or storage).  Its outputs only depend on current inputs and not 
previous inputs.
Another class of digital circuits, which can be built with gates, have 
memory.  The currently output depends on previous inputs as well 
as current inputs. These can be built from NAND (or NOR) gates 
alone.  The “memory” property comes from feedback – feeding the 
outputs of gates back to the inputs.  
On this course, we will NOT concern ourselves with how to 
implement such a storage components using NAND gates. We will 
just use memory circuits as a building block.
Any digital circuit, no matter how complex, can be model by the 
combination of the combinational circuit connected with some 
memory circuits as shown here. This model may look simple, but it 
is universal!
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Circuits whose outputs depends on current inputs and past history 
are called sequential circuits.  This is because the circuit will follow 
some sequences, hence the past is taken into account.  
In sequential circuits, the output could take on different values. 
These are known as states.  A sequential circuit will go through 
these different states in a certain sequence. The exact sequence 
depends on what happens to the input.
Adding memory into a sequential circuit adds the time domain into 
the mix.  Straight forward Boolean expression is no longer 
sufficient because a Boolean variable has no notion of time.  
Therefore when we use Boolean equations to describe behaviour of 
sequential circuits, we need to somehow introduce the time 
element.
When a sequential circuit goes from one state (as defined by some 
of its output) to another state, we call this a “state transition”.
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In sequential circuits, if the transition from a state to another state 
is governed by a single regular, repetitive, clock signal, we call this 
a synchronous circuit.  All changes in such circuits are 
synchronous (and governed) by the clock signal.  Almost all digital 
circuits in the real-world are synchronous.  For example, when you 
buy a computer with an Intel processor running at 3GHz, this 
number refers to the clock signal frequency that determines how 
the processor perform its Boolean evaluation in the logic gates on 
the chip.
Occasionally, some digital circuits goes from one state to another 
state NOT governed by a clock signal.  These are called 
asynchronous circuits.  
In theory, we can implement any logic function in either the 
synchronous or asynchronous way. However, using a clock signal 
to mark when state transitions should occur makes life much easier 
for designer, and generally results in most faster circuits at the 
system level.
On this course, we will only consider sequential circuits that are 
synchronous to a single clock signal.
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The most basic sequential circuit is a flip-flop (FF).  The circuit can 
store only two states: ‘0’ or ‘1’.  Unlike combinational logic gates, a 
flip-flop has memory.  It is effectively a 1-bit storage element.
Many FFs have two outputs Q and Q.
All FFs we considered on this course have a clock and a data signal 
input.
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All synchronous circuits use a clock to determine when they change 
states. The change could occur on the rising edge (positive going) 
or the falling edge (negative going) of the clock signal.  Such 
“edge-triggered” flip-flops have a small triangle next to the clock 
wire.  Further, we use a circuit to indicate a FF that is triggered on 
the falling (negative) edge of the clock.
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In all textbooks, they go through many different TYPES of flip-flops.  
Actually, the only useful type and is found almost universally in all 
digital circuits is the D-type flip-flop (D-FF). (D stands for data.)
The truth table specifying the behaviour of a D-FF is shown here.  
The D-FF stores the current state (i.e. Q is set or ‘1’ or reset or ‘0’).  
D input can change as much as it likes, Q does not respond. 
However, when CLK input goes from low to high (positive edge), 
the logic value of D is sampled and stored in the D-FF, and Q 
changes.
This is like taking a photograph.  The scene (i.e input D) may 
change, and it does not affect the picture (Q output) until you 
press the trigger button (the CLK signal).
You can therefore view the D-FF in two ways:
1. It capture the data input on the command of CLK, and keep this 

data at the output Q for use by other circuits.
2. It blocks any changes on the data input and ignore them. These 

changes (such as glitches from combinational gates) will be 
ignore until the active edge of the clock comes along.
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D-FFs are usually used to “register” or “latch” logic values from 
combinational logic circuits.  Shown here are three signals X, Y, Z 
from logic gates.  The logic gates perform Boolean computation 
and, after some delay, reach final values.  These values are not 
visible on the outputs Q1, Q2 and Q3 until a negative edge occurs 
on the CLK input.  At that moment, the values of X, Y and Z are 
captured by the three D-FFs, and stored. These values are 
presented on the Q outputs (and its inverse).
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If you combine a number of D-FFs together as shown here (for 
three D-FFs), all driven by the same CLOCK signals, but have 
separate D inputs, we form a useful digital building block called a 
register.
You will find registers in all microprocessors and microcontrollers.  
They are used to store a temporary variables whose values are 
then fed to adders or other computational circuits (which are the 
combinational logic gates).  
In many digital systems, you will find combinational logic gates and 
registers interleaving each other, one after another like this:

This way of organising digital circuit is known as “pipelining”.  It is 
the same idea as a production pipeline where the registers act as 
shelves (storage units) between teams of workers or machines 
doing the assembly (logic gates).  The CLK signal makes the 
transition form one stage of the pipeline to the next.
Shown above is a compact symbol for a three bit registers.  The 
CLEAR signal is low active meaning that it is normally ‘1’. When it 
goes low, the content of the D-FF are all reset (i.e. zeroed).
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If we connect the not_Q output back to the D input of the D-FF, we 
have a frequency divide-by-2 circuit.  The D-FF acts as a toggle: on 
each rising edge of the clock, the output changes states (i.e. 
toggles).  This results in Q having a frequency half that of CLOCK.
If you now use the Q output of one D-FF as the CLOCK input to the 
next, we can implement a binary counter as shown here (Q0 is the 
least significant bit or LSB).
We now divide the frequency of CLOCK, by 2, then by 4 and then 
by 8 etc.


